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Continuous Vickers (Hv) indentation tests were performed on different materials (ion 
crystals, metals, ceramics, silica glass and plastic). Load-indentation depth curves were 
taken during the loading as well as during the unloading period by a computer controlled 
hydraulic mechanical testing machine (MTS 810). The indentation work measured both the 
loading and the unloading periods, and these were used for the evaluation of parameters 
characterizing the materials. It was found empirically that there were linear connections 
between the maximum load to the power 3/2 and the indentation work. These connections 
were used to relate the conventional hardness number, Hv, and Young's modulus, E, with 
the work performed during loading and unloading. This work can be determined with great 
accuracy from the measurements. The values of the Young's modulus and the Vickers 
hardness determined this way agree well with those obtained by conventional methods. On 
the basis of continuous indentation tests, materials can be easily classified into the 
isomechanical groups introduced by Ashby. For this classification the Hv/E ratio is generally 
used. As a substitute for Hv/Eanother parameter is recommended which can be determined 
easily from a single measurement. 

1. Introduction 
Various types of continuous indentation tests have 
come into general use for the determination of 
mechanical properties of materials. The indentation 
method is preferred because relatively small amounts 
of testing material are needed and there are no strict 
requirements for the shape of the samples, moreover 
the measurements can be performed without the de- 
struction of the samples. For  these investigations 
a wide variety of testing devices were developed with 
indenters of various forms working in a scale from the 
nanoidentation to macrohardness region. The com- 
mon feature of these tests is that the applied load is 
registered as a function of indentation depth during 
both the loading and unloading period [1 6]. 

A schematic load-penetration depth curve is shown 
in Fig. 1. The curves taken during loading and unload- 
ing can be described by polynoms [1, 3-6] or power 
law functions [2]. The parameters of these functions 
depend intricately on both the elastic and the plastic 
properties of the samples investigated because mater- 
ials are generally deformed both elastically and plasti- 
cally by a sharp indentor. Therefore, to find out the 
conventional elastic and plastic parameters of a ma- 
terial from the continuous indentation tests is not 
a simple problem. However, there are various theoret- 
ically more or less well supported methods for the 
evaluation of the load-penetration depth functions 
obtained experimentally. 

Fr6hlich et al. [1] studying the connection between 
the hardness number and the parameters of the inden- 
tation curve described the loading period by a quad- 
ratic polynom. He proposed that the coefficient of the 
quadratic term can be regarded as a new hardness 
number characterizing the resistance of the bulk ma- 
terial against elastic-plastic deformation. The 
main advantage of the use of this parameter is that it 
is independent of the magnitude of the load and conse- 
quently from the diagonal of the Vickers pattern. As 
is well known, the conventional hardness number is 
by definition the maximum load divided by the con- 
tact area of the indenter and the sample measured 
at maximum load [7-10]. Direct calculation of 
the conventional hardness number from a continuous 
indentation test is difficult because generally there 
is no simple way for the determination of the contact 
area. Oliver and Pharr [2] elaborated on an iterative 
procedure for the determination of the projected 
area of the contact surface. It needed the maximum 
penetration depth and the slope of the unloading 
curve at its starting point as initial parameters. The 
uncertainty of both parameters is relatively high. For  
the first quantity it is the consequence of the uncer- 
tainty of the measurement of the load, for the second 
one it is due to the fact that the calculated value of 
the slope of the unloading curve depends strongly 
on the form of the function fitted to the unloading 
curve. 
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Methods available in the literature for the calcu- 
lation of Young's modulus from indentation tests are 
based in most cases on the theoretical solution of the 
Boussinesq problem given by Sneddon [11] who de- 
termined the indentation depth within an elastic 
half space for various indenters. Pharr et al. [12], 
using Sneddon's results, have calculated the reduced 
Young's modulus, Er, [-(Er = E/1 - v 2) where E is the 
Young's modulus and v is the Poisson's ratio] for 
a broad variety of materials. Their input data were in 
this case also the slope of the initial part of the unload- 
ing curve and the contact area of the indenter and the 
sample at the maximum load. 

Sakai [4] applied a Maxwell type elastic-plastic 
model for the description of the indentation process. 
He defined a so-called "true hardness" for the charac- 
terization of the plastic properties of the materials and 
determined it from the energy dissipated during 
a loading-unloading period. Sakai also determined 
the reduced Young's modulus from the unloading 
curve; however, he did not take into account that this 
curve depended not only on the elastic but also on the 
plastic properties of the materials. 

In the present paper a detailed analysis of the con- 
tinuous indentation curves is given and a new method 
based on energetic argumentation is proposed for 
the determination of the hardness number and the 
Young's modulus. 

2. Experimental procedure 
The mechanical properties of the materials were inves- 
tigated by a special kind of continuous Vickers hard- 
ness test. The surface of the samples was mechanically 
polished before measurement. During the test a 
Vickers pyramid was pressed into the surface of the 
sample by a computer controlled hydraulic mechan- 
ical testing machine (MTS 810). The measurements 
were carried out in the macrohardness region 
(Pmax ~ 100 N). During the loading period the Vickers 
pyramid penetrated into the surface of the sample at 
constant velocity and the same velocity was applied in 
the unloading period when the pyramid moved back- 
wards. In the course of the test the load was registered 
as a function of the penetration depth. Measurements 
were performed on various materials: metals (99.99% 
pure A1 and Cu), soda lime silica glass, alkali halogen- 
ide crystals, polypropylene, Si3N4 ceramics of a com- 
position 90 wt % Si3N4-4 wt % A1203-6 wt % Y203 
sintered to different densities and a series of alumina- 
hydroxyapatite ceramic composites (A1203 HAP) 
with alumina contents up to 60 vol %, and a tetra- 
gonal zirconia polycrystal ceramic sample containing 
10 tool % CeO2 (Ce-TZP ceramic). 

3. Results and discussion 
3.1. Features of the indentation curves 
In the loading period the load-penetration depth 
function can be described by a quadratic polynom 
(Fig. 1) 

P = c2h q- c3h 2 (1) 
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For the unloading period the load also satisfies a 
quadratic equation 

P = c * ( h -  ho) + c * ( h -  ho) 2 (2) 

where P is the load; h is the penetration depth; ho is the 
residual indentation depth after removing the punch; 
and c2, c3, c*, c~ are fitting parameters. The total 
indentation work is the integral of the load with re- 
spect to the indentation depth and it equals to the area 
under the load-penetration depth curve correspond- 
ing to the loading period. During unloading a portion 
of this work can be regained, it is equal to the area 
under the load-indentation depth curve for this latter 
period. 

The difference between these two calculations for 
work gives the energy dissipated during the load- 
ing-unloading period (Fig. 1). The work performed 
during loading, Wt, and unloading, We, can be cal- 
culated by integration of Equations 1 and 2, respec- 
tively 

c2h2 c3h3 
Wt = 2 " ~ m  q- 3 'ore (3) 

c* (h c* ~h W e  = ~ - ,  m - -  h0) 2 + ~ - ,  m - -  h0) 3 (4) 

where hm is the maximum indentation depth. The 
difference between the two quantities equals the work 
dissipated, i.e. 

Wa = W , - W e  (5) 

If the load-penetration depth functions were quad- 
ratic (c2 = c* = 0), all three calculations for work 
should be proportional to p3m/2. In spite of the fact that 
the experimental results show that these functions are 
not quadratic for the materials investigated, the linear 
relationship between the works and p3m/2 is still a good 
approximation. This fact is illustrated in Fig. 2, where 
the total indentation work is shown as a function of 
p3m/2 for copper. It can be proved that even if the 
contribution of the linear term in Equation 1 reaches 
40 per cent of the maximum load, the Wt/P3m/2 ratio 

hm 

Figure 1 Schematic picture of an indentation cycle: P, load; Pro' 
maximum load; Wa, work dissipated; We, work performed during 
unloading; h, indentation depth. 
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Figure 2 The total work, Wt, performed on copper depends linearly 
on p3/2 (where Pm is the maximum load). 
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Figure 3 The ratio of the elastic and total Work versus the para- 
meters of the indentation curves: (A) glass, (A) A1, (Y) Cu, (~) NaC1, 
(O) Si3N4, ([~) plastic, (V) A1203-HAP, (O) Ce-TZP. 

differs only by 7 per cent from the value calculated 
from the quadratic function. 

The quadratic term of the load penetration depth 
function as a fraction of maximum load can be ex- 
pressed by the following 

k X P m  = c 3 x h  2 (6) 

According to the author's measurements for the differ- 
ent materials investigated, k varies between 0.6 and 
0.9. Similarly the cubic term in the total work function 
can be expressed as a fraction of the total work 

k ' x W  t = C3xh3m (7) 
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With the help of these functions the following relation- 
ship can be derived between Wt and Pare/2 

k 1 = kl /2  p3/2 
Wt ~-7 3(r m (8) 

Since c3 is a constant depending only on the material 
investigated, this relationship would be linear for 
a given material if (k /k ' )k  ~/z were constant. Of course 
this condition is generally not strictly satisfied. Never- 
theless it can be shown (see Appendix) that in the 
range k ~> 0.6 this quantity varies only slightly, there- 
fore the Wt(P3m/2) function is nearly linear. Conse- 
quently, using the formulae derived in the Appendix, 
the experimental results can be satisfactorily described 
well by the following relationships 

W t  = m • Pam/2 

where 

W o  = m*  X Pgm/2 

p 3 / 2  
W d = m X --m 

(9) 

(10) 

(11) 

1 
m - ( 1 2 )  

3(C3) 1/2 

1 
m* - (13) 

3(C3) 1/2 

1 1 1  1 1 ( 1 4  ) rfi = m - m *  = 5 (c3-) 1/2 (c*) t/2' 

According to Equations 9-14 it is obvious that the 
works and the parameters of the load-indentation 
depth functions should also satisfy the following rela- 
tionship 

W e  
--  (C3/C~) 1/2 (15) 

Wt 

Fig. 3 shows that the experimental data fit well to 
Equation 15 for a broad variety of materials. 

3.2. The connection between the 
conventional hardness number and 
the parameters of the indentation 
curves 

The parameter c3 which can be easily determined from 
the loading curve is generally used for the character- 
ization of the hardness of materials, however, it is not 
equal to the conventional hardness number [1, 4]. 

In the case of an ideally plastic material the toad- 
indentation depth function is quadratic: P = c3h 2 
[-4, 13]. Since there is no elastic relaxation, the 
d = 7 hm equation between the diagonal of the Vickers 
pattern, d, and the indentation depth, hm, which is the 
consequence of the geometry of the Vickers pyramid is 
exactly satisfied (Fig. 4a). Therefore the Vickers hard- 
ness of the ideally plastic materials obeys the following 
equation 

~@ Pm 
Hv = 1.8544 x = 1.8544 x ~ = ~1 x c3 (16) 

49 x hm 

where a~ = 0.038. 
If the material is not ideally plastic then with in- 

creasing contribution of the elastic deformation to 
the total one, elastic deflection of the material under 
the indenter increases (Fig. 4b). Consequently 7hm be- 
comes step by step larger than d, and as a result of this 
% x c3 will be less than Hv. 

The authors have sought a relationship between 
Hv and al x c3 in the form of 

Hv = [~alc3 (17) 
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Figure 4 Schematic picture showing the behaviour of various ma- 
terials during Vickers indentation: (a) ideally plastic, (b) elasto 
plastic, and (c) ideally elastic. 

t~ 
L9 v 

20 

10 

0.4 

~ 
0,0 I 

0,0 0.1 0.2 0.3 / " 

0 5 10 15 
0.038 c 3 Wt/W d (GPa) 

Figure 5 The conventionally determined hardness number versus 
the quantity calculated on the basis of Equation 18: (A) glass, 
(A) A1, ( ,)  Cu, (O) NaCI, (0) Si3N4, ([3) plastic, (O) Ce-TZP. 

It is obvious that [3 must be one for an ideally plastic 
material and with increasing elasticity it must in- 
crease; and in the limiting case of an ideally elastic 
material it becomes infinite, because in this case there 
is no residual deformation after unloading (Fig. 4). 
The [3 = W t / W  d ratio satisfies the conditions imposed 
on the limiting cases and according to the present 
measurements the experimental results fit well for 
a broad variety of materials to the equation (Fig. 5) 

w~ 
Hv = % x c 3 x - -  (18) 

Wd 

3.3. The connection between the 
parameters of the indentation curves 
and the Young's modulus 

A similar relationship has been found between the 
parameters of the load-penetration depth curves and 
the Young's modulus. According to the theoretical 
investigation of Sneddon [11] the load-indentation 
depth function for an ideally elastic material (Fig. 4c) 
can be described in both the loading and the unload- 
ing period by the same equation 

P = csh 2 = c*h 2 (19) 

where 

_ E x ~2 ~ x tan �9 (20) c3 = c~ 2 ( 1 - - v  2) 

where E is the Young's modulus, v is the Poisson's 
ratio, ~0 is a constant depending on the geometry of 
the indenter (% = 2 for Vickers indenter), 7 = (~/2), 
t) is the semi-angle of the indenter (74.05 ~ for a Vickers 
indenter) [11, 13, 14]. From this equation the Young's 
modulus of ideally elastic materials can be given in 
the form 

E = c~2c~ (21) 

with 

2(1 - v2)7 2 
0~2 - (22) 

tan ~ % 
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Substituting into these equations the parameters char- 
acterizing the geometry of the Vickers pyramid and 
taking v as 1/3 one gets ~2 = 0.63. Empirical evidence 
shows that Equation 21 is not valid for materials 
where the deformation is not ideally elastic. In these 
cases ~2c* becomes higher than E. This can be ex- 
plained in the following way. In the course of the 
plastic deformation a plastic zone is developing under 
the indenter (Fig. 4b) and due to this the elastic stres- 
ses and deformations are lower at the same E and 
Pm than they would be in an ideally elastic material. 
Consequently, elastic relaxation is also smaller than in 
the ideally elastic case. Assuming a relationship be- 
tween E and ~2C~ in the form 

E = [Y%c~ (23) 

the [Y factor must be one for ideally elastic materials 
and it must decrease with increase of the plastic frac- 
tion of the deformation. Of course, in the ideally 
plastic limit E must tend to infinity. According to the 
experimental results the ratio of the elastic and total 
work performed in the course of a loading-unloading 
cycle can be used as 13', i.e. Equation 23 can be written 
in the following form 

E -- ~2C~ We (24) 
w, 

In the elastic limit this formula immediately yields 
Equation 21, predicted theoretically. In the ideally 
plastic limit the validity of E ~ oo is not so obvious, 
because although c* ~ ~ ,  (We/Wt) ,  as mentioned 
already, tends to zero. However, rearranging Equa- 
tion 24 with the help of Equation 15 one can get 

w, 
E = ~ 2 c 3 L  (25) 

We 

This formula implies E ~ o0 for the ideally plastic 
limiting case, since C 3 is a finite number and (Wt /We)  
tends to infinity. Fig. 6 shows that Youngs' moduli 
measured by the four-point bending test agree rela- 
tively well with those calculated on the basis of Equa- 
tion 25. The deviation is especially significant for the 
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Figure 6 Relationship between Young's modulus determined by 
four-point bending test and that calculated on the basis of Equation 
25: (A) glass, (A) A1, (Y) Cu, (O) NaC1, (O) SiaN~, ([]) plastic, 
(V) A1203-HAP, (�9 Ce-TZP. 
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this is probably the uncertainty in the determination 
of the starting point of the loading curve. Therefore 
using Equations 9-14 one has derived the following 
formulae for the determination of Hv, E and the Hv/E 
ratio 

Hv 
51 1 

- ( 2 7 )  
9 mrfi 

52 1 
- ( 2 8 )  

9 rnm* 
E 

H V m* 
- -  = 53-=-_ ( 2 9 )  
E m 

4. C o n c l u s i o n s  
1 linear relationship was empirically found between 
the indentation work determined in the loading and 
unloading period and p3/2, where Pm was 

the maximum load of the indentation cycle. Relation- 
ships between the conventionally measured Vickers 
hardness, Young's modulus and the parameters of 
the indentation curves were established. The equa- 
tions obtained empirically satisfy the conditions 
imposed on the ideally elastic and plastic limiting 
cases. 

It also has been proved that the ratio of the elastic 
and the dissipated work performed during an indenta- 
tion cycle can be used instead of the Hv/E ratio, on the 
basis of which the materials can be classified into 
isomechanical groups. 

Figure 7 The Hv/E ratio as a function of 0.06 (We/Wd): (A) glass, 
(&) A1, (Y) Cu, (O) NaC1, (O) Si3N4, ([]) plastic, (�9 Ce-TZP. 

A1203-HAP series which may be caused by taking 
v = 1/3 for the calculation of 52. 

3.4. The i somechan ica l  g r o u p s  
Ashby and Brown classified materials into iso- 
mechanical groups on the basis of the Hv/E ratio [15]. 
Dividing Equation 18 by Equation 25 one gets 

Hv We 
- -  53 "~'" d w (26) E 

where ~3 = 0.06. Fig. 7 shows that the ratio of the 
hardness and the elastic modulus is proportional to 
the ratio of the elastic and the dissipated work. The 
experimental results prove that using the work per- 
formed in an indentation cycle, the Ashby type classi- 
fication can be easily done because the indentation 
work can be determined with great accuracy from the 
continuous indentation measurements. It is worth 
mentioning that the c3 parameter in Equations 18 and 
25 for the expressions of Hv and E, respectively, can be 
calculated with higher accuracy from the m, m* and 
rfi parameters of Equations 12-14 than directly from 
the load-indentation depth functions. The reason for 

A p p e n d i x  
To investigate the linearity of the Wt(P3m/2) function 
the quantity (k/k')k 1/2 can be expressed as a function 
of k. Take the ratio of the two terms in Pm and W,, 
respectively 

k c3 x h 2 C3hm 
- - ( A 1 )  

1 -- k czhm c2 

k' c3h~/3 2 x c3hm 

1 - k' c2h~n/2 3 x C 2 
(A2) 

From these equations one gets 

2k 
k' - (A3) 

3 - k  

Using Equation A3 one can obtain 

~ kl/2 (3 -- k)k 1/2 
- 2 - f ( k )  ( 1 4 )  

Fig. 8 showsf(k) as a function ofk. It can be seen that 
if k ~> 0.6 thenf(k)  >~ 0.93. 

It means that since for these present measurements 
k ~> 0.6, f (k)  is approximately constant which equals 
to one and there is a linear connection between Wt 
and p3/2. On the basis of Equations 2 and 4 a similar 
relationship can be derived for We, i.e. it can be shown 
that We(P3m/2) is also a linear function. 
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